Mathematically

Connected Communities

PARCC Practice Test Items Geometry

Excerpted 10/2016 from
PARCC Paper-Based and Computer-Based
Practice Tests
https://parcc.pearson.com/practice-tests/math/

Mathematical Practice Questions for $\mathbf{M C}^{\mathbf{2}}$ Thinking Protocol

Use the MC ${ }^{2}$ Thinking Protocol and follow the process below in working with the PARCC practice test items found in this packet:

1. Choose items from this packet that relate to math concepts studied in the current or previous curriculum units during your math instruction. Each item may be used as a practice item worksheet.
2. Choose a set of Thinking/Writing Prompts below based on the math practice the class is working to develop.
3. Add the prompts to the practice item worksheet or display the prompts for the students to respond to.
4. Continue using the same set of prompts for an extended period of time so children develop competence and confidence in describing their mathematical thinking related to the math practice.

The questions below were intentionally not included on each $M C^{2}$ PARCC practice test item worksheet in this packet. These are intended to help students move beyond "answer getting" to fully making sense of test item questions and their own mathematical thinking.

Thinking/Writing Prompts to Promote Mathematical Practices

Math Practice 1: Make sense of problems and persevere in solving them.

1. What do you know about the problem?
2. What questions do you have?
3. Explain your reasoning or thinking in solving the problem.

Math Practice 3: Construct viable arguments and critique the reasoning of others.

1. What are the assumptions, definitions, and previous knowledge to help in thinking about this problem?
2. What are some possible conjectures that you have about the problem?
3. Explain your mathematical argument so that somebody else can make sense of your thinking.

Math Practice 4: Model with mathematics.

1. What are the important quantities in the problem that are needed to solve it?
2. What mathematical operation(s) or representation(s) will you use to solve the problem?
3. Explain how you know your answer makes sense in the context of the situation.

Math Practice 6: Attend to precision.

1. What are the important units in the problem? (What are we measuring or counting?)
2. What relationship between the units/quantities do you need to know in order to solve the problem?
3. Use appropriate and precise mathematical language, units, labels and computations to clearly describe your mathematical reasoning.

In the coordinate plane, line p has slope 8 and y-intercept $(0,5)$. Line r is the result of dilating line p by a factor of 3 with center $(0,3)$. What is the slope and y-intercept of line r ?
A. Line r has slope 5 and y-intercept $(0,2)$.
B. Line r has slope 8 and y-intercept $(0,5)$.
C. Line r has slope 8 and y-intercept $(0,9)$.
D. Line r has slope 11 and y-intercept (0,8).

Use the information provided to answer Part A and Part B for question 2.

The equation $x^{2}+y^{2}-4 x+2 y=b$ describes a circle.

Part A

Determine the y-coordinate of the center of the circle.
Enter your answer in the box.

Part B

The radius of the circle is 7 units. What is the value of b in the equation? Enter your answer in the box.

In the coordinate plane shown, point C (not shown) lies on $\overline{A B}$.

If the ratio of the length of $\overline{A C}$ to the length of $\overline{C B}$ is 3:1, what is the y-coordinate of point C ?

Enter your answer in the box.

The figure shows $\triangle A B C \sim \triangle D E F$ with side lengths as indicated.

What is the value of x ?
Enter your answer in the box.

Use the information provided to answer Part A and Part B for question 5.

In the figure shown, $\stackrel{C F}{ }$ intersects $\overleftrightarrow{A D}$ and $\overleftrightarrow{E H}$ at points B and F, respectively.

Part A

- Given: $\angle C B D \equiv \angle B F E$
- Prove: $\angle A B F \equiv \angle B F E$

Statement	Reason
$\angle C B D \cong \angle B F E$	Given
$\angle C B D \cong \angle A B F$	
$\angle A B F \cong \angle B F E$	

Which two of the given reasons could be used to correctly complete the proof?
A. Definition of congruent angles
B. Congruence of angles is reflexive
C. Congruence of angles is symmetric
D. Congruence of angles is transitive
E. Vertical angles are congruent

Geometry PARCC Unit 1 Section 1 Sample Test Item \#5 (Non-calculator): Standard G-CO.C (continued)

Part B

- Given: $m \angle C B D=m \angle B F E$
- Prove: $m \angle B F E+m \angle D B F=180^{\circ}$

Statement	Reason
$m \angle C B D=m \angle B F E$	Given
$m \angle C B D+m \angle D B F=180^{\circ}$	
$m \angle B F E+m \angle D B F=180^{\circ}$	

Which two of the given reasons could be used to correctly complete the proof?
A. Adjacent angles are congruent
B. Adjacent angles are supplementary
C. Linear pairs of angles are supplementary
D. Reflexive property of equality
E. Substitution property of equality
F. Transitive property of equality

In this figure, triangle $G H J$ is similar to triangle $P Q R$.

Based on this information, which ratio represents $\tan H$?
A. $\frac{8}{15}$
B. $\frac{8}{17}$
C. $\frac{15}{8}$
D. $\frac{17}{8}$

Line segment $J K$ in the $x y$-coordinate plane has endpoints with coordinates $(-4,11)$ and $(8,-1)$. What are two possible locations for point M so that M divides $\overline{J K}$ into two parts with lengths in a ratio of $1: 3$?

Indicate both locations.
A. $(-2,9)$
B. $(-1,8)$
C. $(0,7)$
D. $(1,6)$
E. $(3,4)$
F. $(4,3)$
G. $(5,2)$
H. $(6,1)$

The circle with center F is divided into sectors. In circle $F, \overline{E B}$ is a diameter. The length of $F B$ is 3 units.

Select the correct expression that represents the arc length of $\widehat{A E D}$.
A. π
B. $\frac{11 \pi}{4}$
C. $\frac{13 \pi}{4}$
D. $\frac{7 \pi}{4}$

Geometry PARCC Unit 1 Section 1 Sample Test Item \#9 (Non-calculator): Standard G-SRT. 2

Triangle $K L M$ is the pre-image of $\triangle K^{\prime} L^{\prime} M^{\prime}$, before a transformation. Determine if these two figures are similar.

Which statements are true?
Select all that apply.
A. Triangle $K L M$ is similar to $\Delta K^{\prime} L^{\prime} M^{\prime}$.
B. Triangle $K L M$ is not similar to $\triangle K^{\prime} L^{\prime} M^{\prime}$.
C. There was a dilation of scale factor 0.5 centered at the origin.
D. There was a dilation of scale factor 1 centered at the origin.
E. There was a dilation of scale factor 1.5 centered at the origin.
F. There was a translation left 0.5 and up 1.5 .
G. There was a translation left 1.5 and up 0.5 .

The degree measure of an angle in a right triangle is x, and $\sin x=\frac{1}{3}$.
Which of these expressions are also equal to $\frac{1}{3}$?
Select all that apply.
A. $\cos (x)$
B. $\cos \left(x-45^{\circ}\right)$
C. $\cos \left(45^{\circ}-x\right)$
D. $\cos \left(60^{\circ}-x\right)$
E. $\cos \left(90^{\circ}-x\right)$

Use the information provided to answer Part A and Part B for question 11.

The figure shows line r, points P and T on line r, and point Q not on line r. Also shown is ray PQ.

Part A

Consider the partial construction of a line parallel to r through point Q. What would be the final step in the construction?
A. draw a line through P and S
B. draw a line through Q and S
C. draw a line through T and S
D. draw a line through W and S

Geometry PARCC Unit 1 Section 2 Sample Test Item \#11 (Calculator): Standard G-CO.D
(continued)

Part B

Once the construction is complete, which of the reasons listed contribute to proving the validity of the construction?
A. When two lines are cut by a transversal and the corresponding angles are congruent, the lines are parallel.
B. When two lines are cut by a transversal and the vertical angles are congruent, the lines are parallel.
C. definition of segment bisector
D. definition of an angle bisector

Use the information provided to answer Part A through Part D for question 12.

Luke purchased a warehouse on a plot of land for his business. The figure represents a plan of the land showing the location of the warehouse and parking area. The coordinates represent points on a rectangular grid with units in feet.

Part A

What is the perimeter of the plot of land?
Express your answer to the nearest tenth of a foot.
Enter your answer in the box.

Part B

What is the area, in square feet, of the plot of land that does not include the warehouse and the parking area?

Enter your answer in the box.

Part C

Luke is planning to put a fence along two interior sides of the parking area. The sides are represented in the plan by the legs of the trapezoid. What is the total length of fence needed?

Express your answer to the nearest tenth of a foot.
Enter your answer in the box.

Part D

In the future, Luke has plans to construct a circular storage bin centered at coordinates $(50,40)$ on the plan. Which of the listed measurements could be the diameter of a bin that will fit on the plot and be at least 2 feet away from the warehouse?

Select all that apply.
A. 10 feet
B. 15 feet
C. 18 feet
D. 22 feet
E. 25 feet

A billboard at ground level has a support length of 26 feet that extends from the top of the billboard to the ground. A post that is 5 feet tall is attached to the support and is 4 feet from where the base of the support is attached to the ground. In the figure shown, the distance, in feet, from the base of the billboard to the base of the support is labeled x.

Create an equation that can be used to determine x. Discuss any assumptions that should be made concerning the equation. Use your equation to find the value of x. Show your work or explain your answer.

Enter your equation, assumptions, answer, and work or explanation in the space provided.

Part A

Daniel buys a block of clay for an art project. The block is shaped like a cube with edge lengths of 10 inches.

Daniel decides to cut the block of clay into two pieces. He places a wire across the diagonal of one face of the cube, as shown in the figure. Then he pulls the wire straight back to create two congruent chunks of clay.

Daniel wants to keep one chunk of the clay for later use. To keep that chunk from drying out, he wants to place a piece of plastic sheeting on the surface he exposed when he cut through the cube. Describe this newly exposed two-dimensional cross section, and find its area. Round your answer to the nearest whole square inch. Show your work.

Enter your answers and your work in the space provided.

Part B

Daniel wants to reshape the other chunk of clay to make a set of clay spheres. He wants each sphere to have a diameter of 4 inches. Find the maximum number of spheres that Daniel can make from the chunk of clay. Show your work.

Enter your answer and your work in the space provided.

Geometry PARCC Unit 2 Sample Test Item \#15 (Calculator): Standard G-SRT. 2

In the $x y$-coordinate plane, $\triangle A B C$ has vertices at $A(1,-2), B(1,0.5)$, and $C(2,1)$ and $\triangle D E F$ has vertices at $D(4,-3), E(4,2)$, and $F(6,3)$.

The triangles are similar because $\triangle D E F$ is the image of $\triangle A B C$ under a dilation. What is the center and the scale factor for this dilation?

Select the two true statements.
A. The center of dilation is at $(-2,-1)$.
B. The center of dilation is at ($-1,-2$).
C. The center of dilation is at $(0,0)$.
D. The scale factor is $\frac{1}{2}$.
E. The scale factor is 2 .
F. The scale factor is 4 .

The figure shows two perpendicular lines, s and r, intersecting at point P in the interior of a trapezoid. Line r is parallel to the bases and bisects both legs of the trapezoid. Line s bisects both bases of the trapezoid.

Which transformation will always carry the figure onto itself?
Select all that apply.
A. a reflection across line r
B. a reflection across line s
C. a rotation of 90° clockwise about point P
D. a rotation of 180° clockwise about point P
E. a rotation of 270° clockwise about point P

Use the information provided to answer Part A and Part B for question 17.

A spring is attached at one end to support B and at the other end to collar A, as represented in the figure. Collar A slides along the vertical bar between points C and D. In the figure, the angle θ is the angle created as the collar moves between points C and D.

Part A

When $\theta=28^{\circ}$, what is the distance from point A to point B to the nearest tenth of a foot?

Enter your answer in the box.

Part B

When the spring is stretched and the distance from point A to point B is 5.2 feet, what is the value of θ to the nearest tenth of a degree?
A. 35.2°
B. 45.1°
C. 54.8°
D. 60.0°

A rectangle will be rotated 360° about a line that contains the point of intersection of its diagonals and is parallel to a side. What three-dimensional shape will be created as a result of the rotation?
A. a cube
B. a rectangular prism
C. a cylinder
D. a sphere

The Farmer Supply is building a storage building for fertilizer that has a cylindrical base and a cone-shaped top. The county laws say that the storage building must have a maximum width of 8 feet and a maximum height of 14 feet.

Dump trucks deliver fertilizer in loads that are 4 feet tall, 6 feet wide, and 12 feet long. Farmer Supply wants to be able to store 2 dump-truck loads of fertilizer.

Determine a height of the cylinder, h_{1}, and a height of the cone, h_{2}, that Farmer Supply should use in the design. Show that your design will be able to store at least two dump-truck loads of fertilizer.

Enter your answer and your work in the space provided.

Geometry PARCC Unit 2 Sample Test Item \#20 (Calculator): Standard G-CO. 6

Triangle $A B C$ is shown in the $x y$-coordinate plane.

The triangle will be rotated 180° clockwise around the point $(3,4)$ to create $\triangle A^{\prime} B^{\prime} C^{\prime}$. Which characteristics of $\triangle A^{\prime} B^{\prime} C^{\prime}$ will be the same for the corresponding characteristics of $\triangle A B C$?

Select all that apply.
A. the coordinates of A^{\prime}
B. the coordinates of B^{\prime}
C. the perimeter of $\triangle A^{\prime} B^{\prime} C^{\prime}$
D. the area of $\triangle A^{\prime} B^{\prime} C^{\prime}$
E. the measure of $\angle B^{\prime}$
F. the length of segment $A^{\prime} B^{\prime}$

The figure shows two semicircles with centers P and M. The semicircles are tangent to each other at point B, and $\overrightarrow{D E}$ is tangent to both semicircles at F and E.

If $P B=B C=6$, what is $E D$?
A. 6
B. $\sqrt{48}$
C. 8
D. $\sqrt{72}$

Use the information provided to answer Part A and Part B for question 22.

The figure shows parallelogram $P Q R S$ on a coordinate plane. Diagonals $S Q$ and $\overline{P R}$ intersect at point T.

Part A

Find the coordinates of point Q in terms of a, b, and c.
Enter your answer in the space provided. Enter only your answer.

Part B

Since $P Q R S$ is a parallelogram, $\overline{S Q}$ and $\overline{P R}$ bisect each other. Use the coordinates to verify that $\overline{S Q}$ and $\overline{P R}$ bisect each other.

Enter your justification in the space provided.

The figure shows line $A C$ and line $P Q$ intersecting at point B. Lines $A^{\prime} C^{\prime}$ and $P^{\prime} Q^{\prime}$ will be the images of lines $A C$ and $P Q$, respectively, under a dilation with center P and scale factor 2 .

Which statement about the image of lines $A C$ and $P Q$ would be true under the dilation?
A. Line $A^{\prime} C^{\prime}$ will be parallel to line $A C$, and line $P^{\prime} Q^{\prime}$ will be parallel to line $P Q$.
B. Line $A^{\prime} C^{\prime}$ will be parallel to line $A C$, and line $P^{\prime} Q^{\prime}$ will be the same line as line $P Q$.
C. Line $A^{\prime} C^{\prime}$ will be perpendicular to line $A C$, and line $P^{\prime} Q^{\prime}$ will be parallel to line $P Q$.
D. Line $A^{\prime} C^{\prime}$ will be perpendicular to line $A C$, and line $P^{\prime} Q^{\prime}$ will be the same line as line $P Q$.

Geometry PARCC Unit 2 Sample Test Item \#24 (Calculator): Standard G-CO. 5
Use the information provided to answer Part A and Part B for question 24.

Quadrilaterals $A B C D$ and $E F G H$ are shown in the coordinate plane.

Part A

Quadrilateral $E F G H$ is the image of $A B C D$ after a transformation or sequence of transformations.

Which could be the transformation or sequence of transformations?
Select all that apply.
A. a translation of 3 units to the right, followed by a reflection across the x-axis
B. a rotation of 180° about the origin
C. a translation of 12 units downward, followed by a reflection across the y-axis
D. a reflection across the y-axis, followed by a reflection across the x-axis
E. a reflection across the line with equation $y=x$

Geometry PARCC Unit 2 Sample Test Item \#24 (Calculator): Standard G-CO. 5
(continued)

Part B

Quadrilateral $A B C D$ will be reflected across the x-axis and then rotated 90° clockwise about the origin to create quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. What will be the y-coordinate of B^{\prime} ?

Enter your answer in the box.

The equation $x^{2}-8 x+y^{2}=9$ defines a circle in the $x y$-coordinate plane. What is the radius of the circle?

Enter your answer in the box.

In the $x y$-coordinate plane, $\triangle A B C$ has vertices $A(-4,6), B(2,6)$, and $C(2,2)$. $\triangle D E F$ is shown in the plane.

What is the scale factor and the center of dilation that maps $\triangle A B C$ to $\triangle D E F$?
A. The scale factor is 2 , and the center of dilation is point B.
B. The scale factor is 2, and the center of dilation is the origin.
C. The scale factor is $\frac{1}{2}$, and the center of dilation is point B.
D. The scale factor is $\frac{1}{2}$, and the center of dilation is the origin.

Mariela is standing in a building and looking out of a window at a tree. The tree is 20 feet away from Mariela. Mariela's line of sight to the top of the tree creates a 42° angle of elevation, and her line of sight to the base of the tree creates a 31° angle of depression.

What is the height, in feet, of the tree?
Enter your answer in the box.

Geometry PARCC Unit 2 Sample Test Item \#28 (Calculator): Standard G-CO.1

The figure shows lines r, n, and p intersecting to form angles numbered 1, 2, $3,4,5$, and 6 . All three lines lie in the same plane.

Based on the figure, which of the individual statements would provide enough information to conclude that line r is perpendicular to line p ?

Select all that apply.
A. $m \angle 2=90^{\circ}$
B. $m \angle 6=90^{\circ}$
C. $m \angle 3=m \angle 6$
D. $m \angle 1+m \angle 6=90^{\circ}$
E. $m \angle 3+m \angle 4=90^{\circ}$
F. $m \angle 4+m \angle 5=90^{\circ}$

Use the information provided to answer Part A and Part B for question 29.

The figure shows parallelogram $A B C D$ with $A E=16$.

29. Part A

Let $B E=x^{2}-48$ and let $D E=2 x$. What are the lengths of $\overline{B E}$ and $\overline{D E}$? Justify your answer.

Enter your answer and your justification in the space provided.

Part B

What conclusion can be made regarding the specific classification of parallelogram $A B C D$? Justify your answer.

Enter your answer and your justification in the space provided.

The diagram represents a portion of a small city. Maple Street and Pine Street run exactly east to west. Oak Avenue runs exactly north to south. All of the streets remain straight.

Which statements must be true, based only on the given information?
Select all that apply.
A. Birch Street and Elm Street intersect at right angles.
B. Maple Street and Pine Street are parallel.
C. If more of the map is shown, Elm Street and Oak Avenue will not intersect.
D. Pine Street intersects both Birch Street and Elm Street.
E. Oak Avenue and Maple Street are perpendicular.

The table shows the approximate measurements of the Great Pyramid of Giza in Egypt and the Pyramid of Kukulcan in Mexico.

Pyramid	Height (meters)	Area of Base (square meters)
Great Pyramid of Giza	147	52,900
Pyramid of Kukulcan	30	3,025

Approximately what is the difference between the volume of the Great Pyramid of Giza and the volume of the Pyramid of Kukulcan?
A. 1,945,000 cubic meters
B. $2,562,000$ cubic meters
C. $5,835,000$ cubic meters
D. 7,686,000 cubic meters

In right triangle $A B C, m \angle B \neq m \angle C$. Let $\sin B=r$ and $\cos B=s$. What is $\sin C-\cos C ?$
A. $r+s$
B. $r-s$
C. $s-r$
D. $\frac{r}{s}$

Use the information provided to answer Part A and Part B for question 33.

The figure shows the result of a geometric construction.

Part A

The first step of the construction is to draw an arc centered at point A that passes through point B and point C. What is established by the first step?
A. $\overline{A B} \equiv \overline{B C}$
B. $\overline{A B} \equiv \overline{A C}$
C. $\overline{A D} \cong \overline{A C}$
D. $\overline{B D} \equiv \overline{C D}$

Part B

The construction creates congruent triangles. $\triangle A B D \equiv \triangle A C D$ (not shown). Which statement provides evidence that $\overrightarrow{A D}$ is the angle bisector of $\angle B A C$?
A. $\angle A C D \equiv \angle A B D$
B. $\angle B A C \equiv \angle B D C$
C. $\angle B A D \cong \angle C A D$
D. $\angle B A D \cong \angle A B D$

The figure shows $\triangle A B C$ inscribed in circle D.

If $m \angle C B D=44^{\circ}$, find $m \angle B A C$, in degrees.

Enter your answer in the box.

A dilation centered at point C with a scale factor of k, where $k>0$, can be defined as follows:

1. The image of point C is itself. That is, $C^{\prime}=C$.
2. For any point P other than C, the point P^{\prime} is on $\overrightarrow{C P}$, and $C P^{\prime}=k \cdot C P$. Use this definition and the diagram shown to prove the following theorem:

If $\overline{A^{\prime} B^{\prime}}$ is the image of $\overline{A B}$ after a dilation centered at point C with a scale factor of k, where $k>0$, then $A^{\prime} B^{\prime}=k \cdot A B$.

Be sure to explain how you would use the diagram to prove the theorem, and show justifications for each statement in the proof.

Enter your proof, your explanation, and your justifications in the space provided.

Points J, K, and L are distinct points, and $J K=K L$. Which of these statements must be true?

Select all that apply.
A. J, K, and L are coplanar.
B. J, K, and L are collinear.
C. K is the midpoint of \bar{J}.
D. $\overline{J K} \cong \overline{K L}$
E. The measure of $\angle J K L$ is 90°.

Geometry PARCC Unit 3 Sample Test Item \#37 (Calculator): Standard G-CO.C

Use the information provided to answer Part A through Part D for question 37.

One method that can be used to prove that the diagonals of a parallelogram bisect each other is shown in the given partial proof.

Given: Quadrilateral $P Q R S$ is a parallelogram
Prove:
$P T=R T$
$S T=Q T$

Statements	Reasons		
1. Quadrilateral $P Q R S$ is a parallelogram	1. Given		
2. $\frac{\overline{P Q} \\| \overline{S R}}{\overline{P S} \\| \overline{Q R}}$	2. Definition of parallelogram		
	$3 . \quad$?		
$4 . \quad$?	4. Opposite sides of a parallelogram are congruent		
5. $\triangle S R T \cong \triangle Q P T$	5. ?		
6. $\begin{aligned} \overline{P T} & \cong \overline{R T} \\ \overline{S T} & \cong \overline{Q T}\end{aligned}$	6. Corresponding parts of congruent triangles are congruent		
$\text { 7. } \quad \begin{array}{ll} P T & =R T \\ S T & =Q T \end{array}$	7. Definition of congruent line segments		

Geometry PARCC Unit 3 Sample Test Item \#37 (Calculator): Standard G-CO.C (continued)

Part A

Which reason justifies the statement for step 3 in the proof?
A. When two parallel lines are intersected by a transversal, same side interior angles are congruent.
B. When two parallel lines are intersected by a transversal, alternate interior angles are congruent.
C. When two parallel lines are intersected by a transversal, same side interior angles are supplementary.
D. When two parallel lines are intersected by a transversal, alternate interior angles are supplementary.

Part B

Which statement is justified by the reason for step 4 in the proof?
A. $\overline{P Q} \cong \overline{R S}$
B. $\overline{P Q} \cong \overline{S P}$
C. $\overline{P T} \cong \overline{T R}$
D. $\overline{S Q} \cong \overline{P R}$

Part C

Which reason justifies the statement for step 5 in the proof?
A. side-side-side triangle congruence
B. side-angle-side triangle congruence
C. angle-side-angle triangle congruence
D. angle-angle-side triangle congruence

Geometry PARCC Unit 3 Sample Test Item \#37 (Calculator): Standard G-CO.C (continued)

Part D

Another method of proving diagonals of a parallelogram bisect each other uses a coordinate grid.

What could be shown about the diagonals of parallelogram $P Q R S$ to complete the proof?
A. $\overline{P R}$ and $\overline{S Q}$ have the same length.
B. $\overline{P R}$ is a perpendicular bisector of $\overline{S Q}$.
C. $\overline{P R}$ and $\overline{S Q}$ have the same midpoint.
D. Angles formed by the intersection of $\overline{P R}$ and $\overline{S Q}$ each measure 90°.

Line segment $A B$ with endpoints $A(4,16)$ and $B(20,4)$ lies in the coordinate plane. The segment will be dilated with a scale factor of $\frac{3}{4}$ and a center at the origin to create $\overline{A^{\prime} B^{\prime}}$. What will be the length of $\overline{A^{\prime} B^{\prime}}$?
A. 15
B. 12
C. 5
D. 4

Geometry PARCC Unit 3 Sample Test Item \#39 (Calculator): Standard HS.D.2-11

Use the information provided to answer Part A through Part C for question 39.

The figure shows the design of a shed that will be built. Use the figure to answer all parts of the task.

The base of the shed will be a square measuring 18 feet by 18 feet. The height of the rectangular sides will be 9 feet. The measure of the angle made by the roof with the side of the shed can vary and is labeled as x°. Different roof angles create different surface areas of the roof. The surface area of the roof will determine the number of roofing shingles needed in constructing the shed. To meet drainage requirements, the roof angle must be at least 117°.

Part A

The builder of the shed is considering using an angle that measures 125°. Determine the surface area of the roof if the 125° angle is used. Explain or show your process.

Enter your answer and your work or explanation in the space provided.

Part B

Without changing the measurements of the base of the shed, the builder is also considering using a roof angle that will create a roof surface area that is 10% less than the area obtained in Part A. Less surface area will require less roofing shingles. Will such an angle meet the specified drainage requirements? Explain how you came to your conclusion.

Enter your answer and your explanation in the space provided.

Part C

The roofing shingles cost $\$ 27.75$ for a bundle. Each bundle can cover approximately 35 square feet. Shingles must be purchased in full bundles. The builder has a budget of $\$ 325$ for shingles.

What is the greatest angle the builder can use and stay within budget? Explain or show your process.

Enter your answer and your work or explanation in the space provided.

Two cylinders each with a height of 50 inches are shown.

Which statements about cylinders P and S are true?
Select all that apply.
A. If $x=y$, the volume of cylinder P is greater than the volume of cylinder S , because cylinder P is a right cylinder.
B. If $x=y$, the volume of cylinder P is equal to the volume of cylinder S , because the cylinders are the same height.
C. If $x=y$, the volume of cylinder P is less than the volume of cylinder S , because cylinder S is slanted.
D. If $x<y$, the area of a horizontal cross section of cylinder P is greater than the area of a horizontal cross section of cylinder S.
E. If $x<y$, the area of a horizontal cross section of cylinder P is equal to the area of a horizontal cross section of cylinder S .
F. If $x<y$, the area of a horizontal cross section of cylinder P is less than the area of a horizontal cross section of cylinder S .

Geometry PARCC Unit 3 Sample Test Item \#41 (Calculator): Standard HS.C.14.3

Use the information provided to answer Part A and Part B for question 41.

Marcella drew each step of a construction of an angle bisector.
(
41. Part A

Angle Z is given in Step 1. Describe the instructions for Steps 2 through 5 of the construction. Enter your description in the space provided.

Part B

Marcella wants to explain why the construction produces an angle bisector. She makes a new step with line segments $A C$ and $B C$ added to the construction, as shown.

Using the figure, prove that ray $Z C$ bisects angle $A Z B$. Be sure to justify each statement of your proof.

Enter your proof in the space provided.

Triangle $A B C$ has vertices at $A(1,2), B(4,6)$, and $C(4,2)$ in the coordinate plane. The triangle will be reflected over the x-axis and then rotated 180° about the origin to form $\triangle A^{\prime} B^{\prime} C^{\prime}$. What are the vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$?
A. $A^{\prime}(1,-2), B^{\prime}(4,-6), C^{\prime}(4,-2)$
B. $A^{\prime}(-1,-2), B^{\prime}(-4,-6), C^{\prime}(-4,-2)$
C. $A^{\prime}(-1,2), B^{\prime}(-4,6), C^{\prime}(-4,2)$
D. $A^{\prime}(1,2), B^{\prime}(4,6), C^{\prime}(4,2)$

Use the information provided to answer Part A and Part B for question 43.

The figure shows rectangle $A B C D$ in the coordinate plane with point A at $(0,2.76), B$ at $(3.87,2.76), C$ at $(3.87,0)$, and D at the origin. Rectangle $A B C D$ can be used to approximate the size of the state of Colorado with the x and y scales representing hundreds of miles.

43. Part A

Based on the information given, how many miles is the perimeter of Colorado?

Enter your answer in the box.

Part B

At the end of 2010, the population of Colorado was $5,029,196$ people. Based on the information given, what was the population density at the end of 2010?
A. 25 people per square mile
B. 47 people per square mile
C. 2,269 people per square mile
D. 7,586 people per square mile

Geometry PARCC COMPUTER-BASED Unit 1 (Non-calculator) Sample Test Item \#7:
Standard G-GPE. 6

Point Q lies on $\overline{S T}$, where point S is located at $(-2,-6)$ and point T is located at $(5,8)$. If $S Q: Q T=5: 2$, where is point Q on $\overline{S T}$? Select a place on the coordinate grid to plot point Q.

Geometry PARCC COMPUTER-BASED Unit 1 (Non-calculator) Sample Test Item \#8:
Standard G-C.B.Int. 1

The circle with center F is divided into sectors. In circle $F, \overline{E B}$ is a diameter. The radius of circle F is 3 units.

Drag and drop each arc length to its subtended central angle.

Subtended Central Angle	Arc Length in radians
$\angle A F B$	\square
$\angle B F C$	\square
$\angle C F D$	\square
$\angle A F E$	

In the coordinate plane,
$\triangle A B C$ has vertices at $A(1,-2), B(1,0.5), \quad$ and $C(2,1)$ and
$\triangle D E F$ has vertices at $D(4,-3), E(4,2)$, and $F(6,3)$.
Select from the drop-down menus to correctly complete the sentence.
The triangles are similar because $\triangle D E F$ is the image of $\triangle A B C$ under a dilation with center Choose ... \quad and scale factor Choose...
$(0,0) \quad 2$
$(1,-2)$
3
$(-2,-1) \quad 4$

Geometry PARCC COMPUTER-BASED Unit 2 (Calculator) Sample Test Item \#13: Standard G-SRT. 8

An archaeological team is excavating artifacts from a sunken merchant vessel on the ocean floor. To help with the exploration, the team uses a robotic probe. The probe travels approximately 3,900 meters at an angle of depression of 67.4 degrees from the team's ship on the ocean surface down to the sunken vessel on the ocean floor. The figure shows a representation of the team's ship and the probe.

Select from the drop-down menus to correctly complete the sentences.
When the probe reaches the ocean floor, the probe will be approximately \square
Choose... V meters

> 1,247
> 1,500
> 1,623
> 3,377
> 3,600
below the ocean surface. When the probe reaches the ocean floor, the horizontal distance of the probe behind the team's ship on the ocean surface will be approximately Choose... \quad meters.

1,247

1,500
1,623
3,377
3,600

The figure shows a circle with center P, a diameter $\overline{B D}$, and inscribed $\triangle B C D \cdot P C=10$. Let $m \angle C B D=(x)^{\circ}$ and $m \angle B C D=(x+54)^{\circ}$

Part A

Find the value of x

Enter your answer in the box.

\square

Part B

Select from the drop-down menus to correctly complete the sentence.

This COMPUTER-BASED question has animation to create an angle bisector showing the following steps: (Answer choices have been edited to match the figures below.)

Step 1	 Step 2	 Step 3		

Part A

The first step of the construction is to draw an arc centered at point Z that intersects both sides of the given angle. What is established by the first step?
A. $Z B \cong B A$
B. $\mathrm{ZB} \cong \mathrm{ZA}$
C. $\mathrm{ZC} \cong \mathrm{ZA}$
D. $B C \cong A C$

Part B

Select from the drop down menus to correctly complete the sentences. The construction creates congruent triangles. $\triangle Z B C$ and $\triangle Z A C$ are congruent because of the
\qquad theorem. It follows that ZC must be the angle bisector of \angle AZB because
side, side, side angle, side, angle side, angle, side

$$
\begin{aligned}
& \angle \mathrm{ZAD} \cong \angle \mathrm{ZBD} \\
& \angle \mathrm{BZA} \cong \angle \mathrm{BCA} \\
& \angle \mathrm{BZC} \cong \angle \mathrm{AZC} \\
& \angle \mathrm{BZC} \cong \angle \mathrm{ZBC}
\end{aligned}
$$

An unmanned aerial vehicle (UAV) is equipped with cameras used to monitor forest fires. The figure represents a moment in time at which a UAV, at point B, flying at an altitude of 1,000 meters (m) is directly above point D on the forest floor. Point A represents the location of a small fire on the forest floor.

At the moment in time represented by the figure, the angle of depression from the UAV to the fire has a measure of 30°.

Part A

At the moment in time represented by the figure, what is the distance, in meters, from the UAV to the fire?

Enter your answer in the box.

meters

Part B

What is the distance, to the nearest meter, from the fire to point D ?
Enter your answer in the box.
\square meters

Part C

Points C and E represent the linear range of view of the camera when it is pointed directly down at point D.

The field of view of the camera is 20° and is represented in the figure by $\angle C B E$. If the camera takes a picture directly over point D, what is the approximate width of the forest floor that will be captured in the picture?

- A. 170 meters
- B. 353 meters
- C. 364 meters
- D. 728 meters

Part D

The UAV is flying at a speed of 13 meters per second in the direction toward the fire. Suppose the altitude of the UAV is now 800 meters. The new position is represented at point F in the figure.

From its position at point F, how many minutes, to the nearest tenth of a minute, will it take the UAV to be directly over the fire?

- A. 0.6
- B. 1.2
- C. 1.8
- D. 2.0

