Can Area Models of Multiplication Be Linked to Factoring Polynomials？

One-Digit by One-Digit Multiplication 8×7

$$
40+16=56
$$

Two-Digit by Two-Digit Multiplication
(18) $\times 12$

$(10+8)(10+2)$
$100+20+80+16=216$

Multiplication of Algebraic Expressions
$(X+3)(X+2)$
$\times \quad 3$
$(X+3)(X+2)$

$$
x^{2}+2 x+3 x+6=x^{2}+5 x+6
$$

Try using the area model to multiply this problem. $(3 X+4)(X+2)$

Factoring Polynomials

$$
\begin{aligned}
& x^{2}+6 x+8 \\
& x \\
& x \begin{array}{|c|c|}
\hline x^{2} & 2 x \\
\hline & \\
\hline 4 & 4 x \\
\hline
\end{array} \\
& \begin{array}{l}
4 \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

$$
1 \times 8 \quad-1 \times-8
$$

$$
2 \times 4-2 x-4
$$

$$
\begin{aligned}
& 1+5 \\
& 2+4 \\
& 3+3
\end{aligned}
$$

Try using the area model to factor this problem.

$$
x^{2}+11 x+24
$$

For other interesting uses of flexibility with numbers view Jo Boaler's video, What is Number Sense?
https://www.youcubed.org/what-is-number-sense/

For more information, email mc2.numsu.edu

Funded by:
US Department of Education/Math-Science Partnership (MSP)

New Mexico Public Education Department (PED)

Higher Education Department (HED)
Participating School Districts' Cost Share
© 2017 Mathematically Connected Communities (MC^{2}) Project. All Rights Reserved.

