Welcome!

This webinar was pre-recorded on Wednesday, January 27, 2016.

Please submit any questions or comments to mc2@nmsu.edu.

From Counting to Counting On

Fostering the Development of Early Addition \& Subtraction

Narrators: Megan Kidwell and Lisa Matthews
Developers: MC ${ }^{2}$ K-3 Feam

Stages of Early Counting: Research

- Les Steffe, UGA, I980s
- Identifies stages of counting that children progress through as they come to understand the operations of addition and subtraction
- Related to Piaget's theory of cognitive development

Stages of Early Counting: Making Sense with Concrete Collections

- Emergent

Student is unable to accurately count a collection

- Perceptual

Student can count visible collections, but not collections that are covered up

- Figurative

Student can count covered collections, but always "counts everything" (always starts counting from one)

- Counting On /Counting Back

Student is able to start with one collection and count on or back

Stages of Early Counting: Making Sense with Concrete Collections

- Emergent

Student is unable to accurately con

- Perceptual
- Co On/Counting Back

Student is able to start with one collection and count on or back

Features of Early Counting

- Number sequences (verbal)
- One-to-one correspondence
- Keeping track
- One total for two distinct collections
- Cardinality:

The answer to "How many?" can be a single number word (" 5 ")

- Progresses from concrete to abstract: visible collections \rightarrow concealed collections

Features of Early Counting

■ Knows number sequences (verbal)
■ Uses one-to-one correspondence
■ Monitors items as they are counted

Perceptual
Counting:
Students are counting things they can see

■ Can give the total for two distinct collections
\square Cardinality:
The answer to "How many?" can be a single number word (" 5 ")

- Progresses from concrete to abstract: visible collections \rightarrow concealed collections

Features of Early Counting

■ Knows number sequences (verbal)
\square Uses one-to-

- Progresses from concrete to abstract: visible collections \rightarrow concealed collections

Features of Early Counting

V Number sequences (verbal)

『 One-to-one correspondence

■ Keeping track

- Onn ヶntnls...
ections
Figurative Counting:
- Students are counting things that are covered up , be a single number word ("5")
- Progresses from concrete to abstract: visible collections \rightarrow concealed collections

Features of Early Counting

V Number sequences (verbal)

『 One-to-one correspondence

■ Keeping track

PRRCPTUAL - FIGURAL oNE TO BE ABE TO SEE DOES NOT HATE TOR TO COUNT THEM OBJECTS \mathbb{N} concealed collections

Features of Early Counting

『 Counting on / counting back
Student understands that, rather than counting everything in the first collection, they can refer to the entire first collection with a single number

Student counts on to add, counts back to subtract

Features of Early Counting

- Counting on / co

" 6 " NCC UOE

Stages of Early Counting: Emergent Counting

Counting Collections

How many counters are there?

How many counters are there?

Can you get me 12 counters?

Counting Collections: Cross the River

Counting Collections: Cross the River

These "ducks" need to cross the river. Can you help them?
When you are done, I want you to tell

Counting Collections: Cross the River

These "ducks" need to cross the river. Can you help them?
When you are done, I want you to tell me how many ducks crossed the river.

Materials:
construction paper
pipe cleaner
masking tape counters

Number Row Count

Number Row Count

\square

Number Row Count

Stages of Early Counting: Perceptual Counting

- Number sequences (verbal)

■ One-to-one correspondence
■ Keeping track

- One total for two distinct collections
- Cardinality:

The answer to "How many?" can be a single number word (" 5 ")

Domino Addition

Domino Addition

How many dots do you see?

Domino Addition

How many dots do you see?
How many dots are under the door?

Domino Addition

How many dots do you see?
How many dots are under the door?
How many dots do we have all together?

Variations: Conceal only the second card / Conceal both cards

Stages of Early Counting: Figurative Counting

- Progressing from concrete to abstract:
~ counts collections that are covered up
~ always counts from one (counts everything)

Addition Spinners

Addition Spinners

Addition Spinners

Addition Spinners

How many counters are there all together?

Hide \& Add

Hide \& Add

Hide \& Add

How much is 7 and 4 more?

Hide \& Add

Hide \& Add

Hide \& Add

How much is 9 and 5 more?

Features of Early Counting: Counting On

BEWARE OF MAKING COUNTING ON A PROCEDURE: "PUT THE BIG NUMBER IN YOUR HEAD"

Features of Early Counting: Counting On

BEWARE OF MAKING COUNTING ON A PROCEDURE:
 \#PIT THL RIG NUMBED IN VOUR HEARU

Stages of Early Counting: Counting On / Counting Back

\square Student understands that, rather than counting everything in the first collection, they can refer to the entire first collection with a single number

Student counts on to add, counts back to subtract

Stages of Early Counting: Where are they in the CCSSM?

■ The standards address perceptual counting in detail

- The standards emphasize solving a variety of problem types (combine, separate, compare, missing addend, missing subtrahend)
- Less attention is given to the stages between perceptual counting and solving bare number tasks
- Awareness of the stages is important in making decisions about instruction \& support for young students

What materials will I use? Will I conceal the materials?
Is it time to begin to connect materials to symbolic notation?

Stages of Early Counting: Kinder CCSSM

Count to tell the number of objects
K.CC. 4

Understand the relationship between numbers and quantities; connect counting to cardinality.
a) When counting objects, say the numbers in the standard order, pairing each object with one number and each number with one object.
b) Understand that the last number said tells the number of items counted, the number of items is the same regardless of arrangement or order in which they are counted.
K.CC. 5

Count to answer "how many?" questions about up to 20 things; given a number from I-20, count out that many objects.

Understand addition as putting together \& adding to
Understand subtraction as taking apart \& taking from
K.OA.I

Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.
K.OA. 2

Solve addition and subtraction word problems, and add and subtract within I0, e.g., by using objects or drawings to represent the problem.

Stages of Early Counting: Kinder CCSSM

Count to tell the number of objects
K.CC. 4

Understand the relationship between numbers and quantities; connect counting to cardinality.
a) When counting objects, say the numbers in the standard order 'g each object with one number and each number with one object.
b) Understand that the last number said tells the number of item.
the number of items is the same regardless of arrangement or o,
K.CC. 5

Count to answer "how many?" questions about up to 20 things; given a nun. many objects.

Understand addition as putting together \& adding to Understand subtraction as taking apart \& taking from K.OA.I

Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (acting out situations, verbal explanations, expressions, or equations.
K.OA. 2

Solve addition and subtraction word problems, and add and subtract within I0, e.g., by using obje. drawings to represent the problem.

Stages of Early Counting: Kinder CCSSM

Count to tell the number of objects

K.CC. 4

Understand the relationship between numbers and quantities; connect counting to cardinality.
a) When counting objects, say the numbers in the standard order 'g each object with one number and each number with one object.
b) Understand that the last number said tells the number of item.
the number of items is the same regardless of arrangement or or in they are counted.
K.CC. 5

Count to answer "how many?" questions about up to 20 things; given a nun. many objects.

Understand addition as putting together \& adding to Understand subtraction as taking apart \& taking from K.OA.I
figurative counting?

Represent addition and subtraction with objects, fingers mental images, drawings sounds acting out situations, verbal explanations, expressions, or equations.
K.OA. 2

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using obje. drawings to represent the problem.

Stages of Early Counting: Mathematizing in Kinder

- Allow time for students to become robust perceptual counters
- Count collections that are becoming smaller (remember to practice backwards counting sequences)

■ Consider how to advance student thinking as students become robust perceptual counters

- Introduce the idea of counting collections that are covered up

Stages of Early Counting: Ist Grade CCSSM

Represent and solve problems involving addition and subtraction.

I.OA.I

Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem

I.OA. 2

Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem

Add \& subtract within 20 I.OA. 5

Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).

Stages of Early Counting: Ist Grade CCSSM

Represent and solve problems involving addition and subtraction. I.OA.I

Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem

I.OA. 2

Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem
(Understand and apply properties of operations and the relationship between addition and subtraction.)
Add \& subtract within 20
I.OA. 5

Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).

Stages of Early Counting: Ist Grade CCSSM

Represent and solve problems involving addition and subtraction. T.OA.I

Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem

I.OA. 2

Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem
(Understand and apply properties of operations and the relationship between addition and subtraction.)
Add \& subtract within 20
I.OA. 5

Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).

Stages of Early Counting: Mathematizing in Ist Grade

■ Consider how to advance student thinking: How will figurative students develop a counting on strategy? How will your students make sense of symbolic notation (equations)?

■ Present two collections that are covered up: How many are there in all?

- Put a small number of counters in the second collection (students are more likely to realize they can "count on" when there are only one or two more counters to add)
- Once students develop a counting on strategy to add collections, begin to present tasks that involve removing counters (subtraction)
- Introduce symbolic notation once students have robust counting on / counting back strategies to solve addition \& subtractions tasks with counters

Thank you!

This webinar recording and handouts are available at the MC^{2} and New Mexico K-3 PLUS websites.

Please submit any questions or comments to mc2@nmsu.edu.

