Great Race for 5 Plus

1 Game Board
Numeral die or spinner (0-5)

Example:
Student rolls a 2 and pulls over 2 beads on the lower row.
Student solves $5+2$ using a non-counting strategy.
The answer is 7 , so the player who initialed 7 X's out a box.

Arithmetic Rack with 5 beads pulled over on the upper row 2 players

1. Each player chooses 3 numbers on the game board. Players write their initials beside their numbers.
2. Players take turns rolling the die and pulling over that number on the top row of the arithmetic rack.
3. Player who rolled the die adds the amount on the die to 5 , using the arithmetic rack.
4. The total indicates which number gets one of its boxes X 'd out. (It may be a number initialed by the player who didn't roll the die.)
5. continue taking turns rolling the die and X-ing out numbers.
6. The first player to reach the center of the game board wins.

Prepared by Megan Kidwell, Mathematics Education Program Specialist, Mathematically Connected Communities (MC ${ }^{2}$), New Mexico State University, for MC² Early Fluency in Structuring Number Webinar, December 2015.

The Great Race for 5-Plus

$$
5+\ldots=
$$

Prepared by Megan Kidwell, Mathematics Education Program Specialist, Mathematically Connected Communities (MC^{2}),
New Mexico State University, for MC² Early Fluency in Structuring Number Webinar, December 2015.

Great Race for Plus 5

1 Game Board
Numeral die or spinner (5-10)
Arithmetic Rack with 5 beads pulled over on the lower row 2 players

1. Each player chooses 3 numbers on the game board. Players write their initials beside their numbers.
2. Players take turns rolling the die and pulling over that number on the top row of the arithmetic rack.
3. Player who rolled the die adds 5 to the number on the arithmetic rack using a non-counting strategy.
4. The total indicates which number gets one of its boxes X 'd out. (It may be a number initialed by the player who didn't roll the die.)
5. continue taking turns rolling the die and X-ing out numbers.
6. The first player to reach the center of the game board wins.

Prepared by Megan Kidwell, Mathematics Education Program Specialist, Mathematically Connected Communities (MC ${ }^{2}$), New Mexico State University, for MC² Early Fluency in Structuring Number Webinar, December 2015.

The Great Race for Plus 5
The Great Race for Plus 5

$+5=$

Prepared by Megan Kidwell, Mathematics Education Program Specialist, Mathematically Connected Communities (MC ${ }^{2}$),
New Mexico State University, for MC ${ }^{2}$ Early Fluency in Structuring Number Webinar, December 2015.

Great Race for Minus 5

1 Game Board
Numeral die or spinner (10-15)
Arithmetic Rack
2 players

Example:
Student rolls a 14 and pulls over 14 beads (10 on the top row). Student solves 14-5 using a non-counting strategy.
The answer is 9 , so the player who initialed 9 X 's out a box.

1. Each player chooses 3 numbers on the game board. Players write their initials beside their numbers.
2. Players take turns rolling the die and pulling over that number on the arithmetic rack (10 on the upper row and the rest on the lower row).
3. Player who rolled the die subtracts 5 from the number on the arithmetic rack using a non-counting strategy.
4. The difference indicates which number gets one of its boxes X 'd out. (It may be a number initialed by the player who didn't roll the die.)
5. continue taking turns rolling the die and X-ing out numbers.
6. The first player to reach the center of the game board wins.

Prepared by Megan Kidwell, Mathematics Education Program Specialist, Mathematically Connected Communities (MC ${ }^{2}$), New Mexico State University, for MC² Early Fluency in Structuring Number Webinar, December 2015.

The Great Race for Minus 5 The Great Race for Minus 5

Prepared by Megan Kidwell, Mathematics Education Program Specialist, Mathematically Connected Communities (MC ${ }^{2}$),
New Mexico State University, for MC² Early Fluency in Structuring Number Webinar, December 2015.

Great Race for 9 plus

1 Game Board
Numeral die or spinner (4-9)
Example:
Student rolls a 5 and pulls over 5 beads on the lower row. Student solves $9+5$ using a non-counting strategy.
The answer is 14 , so the player who initialed 14 X's out a box.

Arithmetic Rack set up with 9 beads pulled over on the upper row 2 players

1. Each player chooses 3 numbers on the game board. Players write their initials beside their numbers.
2. Players take turns rolling the die and pulling over that number on the lower row of the arithmetic rack.
3. Player who rolled the die adds the 2 rows of the arithmetic rack using a non-counting strategy.
4. The total indicates which number gets one of its boxes X 'd out. (It may be a number initialed by the player who didn't roll the die.)
5. continue taking turns rolling the die and x-ing out numbers.
6. The first player to reach the center of the game board wins.

Prepared by Megan Kidwell, Mathematics Education Program Specialist, Mathematically Connected Communities (MC ${ }^{2}$), New Mexico State University, for MC² Early Fluency in Structuring Number Webinar, December 2015.

The Great Race for 9 plus

The Great Race for 9 plus

Prepared by Megan Kidwell, Mathematics Education Program Specialist, Mathematically Connected Communities (MC ${ }^{2}$), New Mexico State University, for MC² Early Fluency in Structuring Number Webinar, December 2015.

Great Race for 16 Minus

Example:
Student rolls a 4. Looking at the arithmetic rack, student solves 16-4 using a non-counting strategy.
The answer is 12 , so the player who initialed 12 X's out a box.

1 Game Board
Numeral die or spinner (3-8)
Arithmetic Rack with 16 beads pulled over (8 and 8)
2 players

1. Each player chooses 3 numbers on the game board. Players write their initials beside their numbers.
2. Players take turns rolling the die.
3. Player who rolled the die subtracts the number rolled from 16 , using a non-counting strategy.
4. The difference indicates which number gets one of its boxes X 'd out. (It may be a number initialed by the player who didn't roll the die.)
5. continue taking turns rolling the die and X-ing out numbers.
6. The first player to reach the center of the game board wins.

The Great Race for 16 Minus
The Great Race for 16 Minus

Prepared by Megan Kidwell, Mathematics Education Program Specialist, Mathematically Connected Communities (MC ${ }^{2}$),
New Mexico State University, for MC² Early Fluency in Structuring Number Webinar, December 2015.

Great Race for 12 Minus

1 Game Board
Numeral die or spinner (2-7)
Arithmetic Rack with 12 beads pulled over (10 and 2)
2 players

1. Each player chooses 3 numbers on the game board. Players write their initials beside their numbers.
2. Players take turns rolling the die.
3. Player who rolled the die subtracts the number rolled from 12 , using a non-counting strategy.
4. The difference indicates which number gets one of its boxes X 'd out. (It may be a number initialed by the player who didn't roll the die.)
5. continue taking turns rolling the die and X-ing out numbers.
6. The first player to reach the center of the game board wins.

The Great Race for 12 Minus
The Great Race for 12 Minus

$12-\ldots$

Prepared by Megan Kidwell, Mathematics Education Program Specialist, Mathematically Connected Communities (MC ${ }^{2}$), New Mexico State University, for MC² Early Fluency in Structuring Number Webinar, December 2015.

The Great Race for
The Great Race for

$=$ \qquad

Prepared by Megan Kidwell, Mathematics Education Program Specialist, Mathematically Connected Communities (MC ${ }^{2}$), New Mexico State University, for MC² Early Fluency in Structuring Number Webinar, December 2015.

