

Teacher Guide to Implementing MC² Thinking Protocol for Mastery of Specific Common Core Content and Mathematical Practice Standards

Purpose	Activity	Materials
Part 1: Preparation during	1. In a PLC or with a colleague, develop or select a	Rich math problems aligned to
Professional Learning	formative assessment task to administer to students	CCSS-M (Open-ended tasks)
Community (PLC)	(item should be based on instruction that students	
	are currently engaged in or have previously	MC ² PARCC Practice Test Item
	experienced in class). Curriculum resources or	Packets
Why Math	released PARCC test items are good sources for tasks.	https://mc2.nmsu.edu/teacher
Practices?	Teleased FARee test items are good sources for tasks.	s/preparing-for-parcc/
	2. Choose a set of Thinking/Writing Prompts below	<u>sy preparing for parcey</u>
The Common Core	based on the math practice the class is working to	PARCC Released Items
Mathematical Practice	develop. The questions are intended to help students	https://parcc-
Standards describe varieties	move beyond "answergetting" to fully making sense	assessment.org/released-
of expertise that math	of test item questions and their own mathematical	items/?fwp_subject_facet=mat
educators at all levels	thinking to develop other indicators.	hematics
should seek to develop in		<u>inclinatios</u>
their students. These	Math Practice 1: Make sense of problems and persevere in	PARCC Math Practice Tests
practices rest on the	solving them.	https://parcc.pearson.com/pra
following processes and	What do you know about the problem?	ctice-tests/math/
proficiencies with	What questions do you have?	
longstanding importance in	• Explain your reasoning or thinking in solving the problem.	PARCC Answer Keys/Rubrics
mathematics education.	Math Practice 3: Construct viable arguments and critique the	https://parcc-
NCTM Process	reasoning of others.	
• NCTW Process Standards: Problem	What are the assumptions, definitions, and previous	assessment.org/answer-keys/
	knowledge to help in thinking about this problem?	Illustrative Mathematics
solving, reasoning and	What are some possible conjectures that you have about	https://www.illustrativemathe
proof, communication,	the problem?	
representation, and connections	Explain your mathematical argument so that somebody	matics.org/content-standards
National Research	else can make sense of your thinking.	
	Math Practice 4: Model with mathematics.	
Council's Report/Adding It Up Mathematical	What are the important quantities in the problem that are	
-	needed to solve it?	
Proficiency Strands:	 What mathematical operation(s) or representation(s) will 	
Adaptive reasoning,	you use to solve the problem?	
strategies competence,	Explain how you know your answer makes sense in the	
conceptual	context of the situation.	
understanding,	Math Practice 6: Attend to precision.	
procedural fluency, and	What are the important units in the problem? (What are	
productive disposition	you measuring or counting?)	
	 What relationship between the units/quantities do you 	
	need to know in order to solve the problem?	
	Use appropriate and precise mathematical language, units,	
	labels and computations to clearly describe your	
	mathematical reasoning.	
	3. Add the prompts to the practice item worksheet or	
	display the prompts for the students to respond to.	
	4. Continue using the same set of prompts for an	
	extended period of time so children develop	
	competence and confidence in describing their	
	mathematical thinking related to the math practice.	

Teacher Guide to Implementing MC² Thinking Protocol for Mastery of Specific Common Core Content and Mathematical Practice Standards

Purpose	Activity	Materials
Part 2: Administration of	Set aside at least 15-20 minutes of instructional time for	Copy of student task for
Task to Students	students to:	each student
	1.Think individually (3+ Minutes) –Have students think about	
	the problem alone, answer the set of <i>Math Practice</i>	2 pencils and/or pen (each
Why a task?	Thinking/Writing Prompts using one of the pencils.	with different color
The intention of	2.Think with a partner (5+ Minutes)–Have students share	lead/ink) for each student
administering a task is to	their solutions and responses to the <i>Thinking/Writing</i>	
_		
capture the journey of	<i>Prompts</i> with a partner. Using a different pencil or pen, they	
mathematical thinking and	can change or add to their answers and/or add any new	
build a stronger	insights they learned. Remind students that no erasing is	
understanding of	allowed. Make sure both partners have a chance to share.	
mathematics through	3.Think with the class (6+ Minutes)–Have students share	
conversations. This takes	different solution strategies and responses to the	
effort and thought and	Thinking/Writing Prompts with the whole class. Summarize	
doesn't always come out	and record the different strategies used. The following	
perfect the first time.	sentence frames which promote the math practices may be	
	used by the students:	
	Math Practice 3: Construct viable arguments and critique the	
	reasoning of others	
	I made a conjecture when I	
	I justifies my conclusion by	
	I constructed a viable argument when	
	I made sense of another's argument when	
	A question I asked to help clarify my own or someone else's	
	thinking was	
	Math Practice 4: Model with mathematics.	
	 The important quantities in this problem are because I estimate the answer to be because 	
	 I decided to represent the problem by (table, equation, graph, 	
	diagram, flow-chart, formula, etc.) because	
	 The equation I used to represent the problem matches my 	
	mathematical thinking because	
	 I changed my strategy when 	
	Math Practice 6: Attend to precision.	
	 The explanation could be stronger if 	
	 I examined's claim and offered to make it clearer. 	
	 We checked the accuracy of our calculations by 	
	 I used vocabulary in the anchor chart to make my 	
	communication precise.	
	 We know the equal sign was used appropriately because 	
	 In this problem, our symbols and variables represent 	
	• The use of units helped me to make sense of the problem when	For additional student
	4.Reflect on the process (1+ Minutes)–Have students reflect	reflection questions, go to
	on the task and identify what was easy/hard about the	the link below:
	problem. Additional reflection questions are available on the	
	Student Reflection Form.	https://mc2.nmsu.edu/teac
	5.Collect and sort the student work based on the rubric	hers/5-ways-to-
	developed in the PLC. There is no need to score the work	implement/#4
	(alpha/ numeric/percent), only complete an initial sort.	

Teacher Guide to Implementing MC² Thinking Protocol for Mastery of Specific Common Core Content and Mathematical Practice Standards

Purpose	Activity	Materials
Part 3: Collaborative Reflection during PLC Why reflect?	 Review student work and analyze different solution strategies which students used to solve the problem. 	Student work (Sorted based on rubric developed/selected in PLC during Part 1)
High levels of reflection are a practice that is best fostered with colleagues. It provides a good sense of when teachers need to step back and think deeply and promotes better understanding of what is/isn't working.	 In a PLC, discuss what data this process/task provides. Consider what instructional strategies are needed to support students' development of Mathematical Practices and flexibility in problem solving. a. What do students understand? Where is the evidence in the student work? b. What were misconceptions/gaps in the students' knowledge? Where is the evidence in the student work? c. What were the instructional strategies or classroom experiences that can help move the learning forward? d. How can the protocol be used to build math confidence in students? e. How are the Common Core and Math Practice Standards advanced using the MC² Thinking Protocol as classroom warm-up problems? 	MC ² Thinking Protocol Data Collection & Analysis Tool https://mc2.nmsu.edu/teachers/ 5-ways-to-implement/#4